If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6t^2-18t-16=0
a = 6; b = -18; c = -16;
Δ = b2-4ac
Δ = -182-4·6·(-16)
Δ = 708
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{708}=\sqrt{4*177}=\sqrt{4}*\sqrt{177}=2\sqrt{177}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{177}}{2*6}=\frac{18-2\sqrt{177}}{12} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{177}}{2*6}=\frac{18+2\sqrt{177}}{12} $
| 15x-8=10x-23 | | 2-3x+x=-8 | | 2p−2+4p=-8+5p | | x/6=x+5 | | 3m+m=-64 | | x1/2+6=1/3x | | 0.5(x-2)=x-8-2 | | 3x+17=4x•12 | | 2/3(3x+9=-2(3x+6 | | 8+-a=15 | | 3x+17=4x×12 | | -2(2x+7)=-4x+14 | | -6−7d=-2d−1−5 | | x-3/7=1/3 | | 3(n-5)=-n-15+4n | | -6(9z+7)=-20+3z | | 2x+19+6x-5=62 | | 33/4-n=n+1/2 | | -7f+6f=-33 | | x-6=3/2x | | 8a-20=a+15 | | .50x+3=x=+.50 | | -6w+10=-5w | | -9Z=-7z+10 | | x-6=(3/2)x | | (3+5x)(2–3x)=12–15x2x= | | P-32=p×0.6 | | 3b−1=9b−7 | | -6s=-8-4s | | 13x+15+2x=11 | | 8x=7x+-30 | | 7+(2x-1)=12 |